HIGH RESOLUTION 3D SEISMIC REFLECTION SURVEYS TO CHARACTERIZE AND PLAN REMEDIATION AT HAZARDOUS WASTE SITES

(805) 982-1005

PROBLEM

DNAPL Contamination Sites:

- Detection of subaqueous, free phase DNAPL is difficult.
 - limited to extrapolation of soil gas survey results & coincidental soil sampling
- Cleanup methods consist of long-term treatment of dissolved phase DNAPLs.
 - (i.e. treating the symptom, not the problem)
 - typically a costly and relatively ineffective effort

3D SEISMIC TECHNIQUE

- Determine local stratigraphy:
 - develop basic model from background research
 - interpret seismic profiles
- Detect DNAPL: additional analysis of signal attributes:
 - amplitude
 - frequency
 - phase

DATA COLLECTION

SEISMIC SOURCE

SEISMOGRAPHS & GEOPHONES

SEISMIC PROFILES DISPLAYING AMPLITUDE (NAS NORTH ISLAND SITE)

INTERPRETED FRACTURES

PROFILE AT CONTAMINATED AREA

PROJECT DESCRIPTION:

DEMONSTRATION/VALIDATION OF 3D SEISMIC SURVEYS

- Perform 3D seismic surveys at four DoD installations that have differing geology and DNAPL contamination.
- Verify these survey results by comparing to conventional site characterization methods
- Document the capabilities and cost effectiveness of this technology.
- Transfer this information to project managers responsible for site clean-ups.

DEMONSTRATION SITES

- NAS Alameda, CA saturated sediment
- Tinker AFB, OK interbedded sand and shale
- Letterkenny Army Depot, PA Karst (limestone)
- Allegany Ballistic Lab, WV deformed, fractured bedrock

PROGRESS

Contract delivery order awarded to Battelle/RRI in June 1996

<u>Task</u>	<u>Allegany</u>	<u>Alameda</u>	<u>Letterkenny</u>	<u>Tinker</u>
3D survey:	Mar 96*	Oct 96	Nov 96	Feb 97
Verify:	May 97	Apr 97	Jun 97	July 97
Report:	Jul 97	Jun 97	Aug 97	Sep 97

EXPECTED BENEFITS

- Install fewer wells
- Optimize location of wells
- Improve design of remediation systems
- Reduce chance of spreading contaminants
- Better define complex geology
- Monitor cleanup effectiveness
- Support intrinsic bioremediation studies

USERS

- Personnel responsible for characterizing a site or designing a monitoring/remediation system
 - Remediation Project Managers (RPMs)
 - Cleanup contractors

BARRIERS

- Demonstrating technical feasibility
- Regulatory acceptance
- Greater upfront costs
- Limits drilling revenues

FUNDING SOURCE

Demonstration project:

ESTCP - DoD agency sponsoring demonstration & validation of innovative technologies

• Future work:

BRAC, DERA, NAVFAC, base funds

TRANSITION PLAN

- Identify users
- Develop technology transfer tools
 - -technology data sheet
 - generic SOW & cost estimate
 - promotional video
 - internet home page
 - newsletter articles & conference papers
- Coordinate with various environmental agencies:
 EFA, EFD, ARTT; AFCEE, AL/EQW; AEC, HTRW-CX;
 EPA/DoD/DOE Roundtable; ITRC Work Group; CMECC, NERL (EMSL)

JOINTNESS

Demonstrations being performed at Navy, Air Force, and Army facilities:

- Naval Air Station Alameda, CA
- Letterkenny Army Depot, PA
- Tinker Air Force Base, OK
- Allegany Ballistic Lab, WV

ISSUES

- Finding DNAPL free-product at the sites
- Demonstrating the capability of this technique to directly detect DNAPLs

BASIC PRINCIPLE

- SOUND IS REFLECTED OFF EARTH LAYERS
- REFLECTIONS ARE DIGITIZED
- DIGITIZED SIGNALS ARE PROCESSED
- TRUE 3D IMAGE IS CREATED

3D DATA DISPLAY: STRATIGRAPHIC LAYER

INTERPRETED SEISMIC SECTION WITH BORING LOG

3D ELECTRO-MAGNETIC RESISTIVITY SURVEYS FOR HIGH RESOLUTION IMAGING OF SUBSURFACE CONTAMINATION

Nate Sinclair (805) 982-1005 nsincla@nfesc.navy.mil

PROBLEM

DNAPL Contamination Sites:

- Detection of subaqueous, free phase DNAPL is difficult.
 - limited to extrapolation of soil gas survey results & coincidental soil sampling
- Cleanup methods consist of long-term treatment of dissolved phase DNAPLs.
 - (i.e. treating the symptom, not the problem)
 - typically a costly and relatively ineffective effort

3D ELECTROMAGNETIC TECHNIQUE

- Determine local stratigraphy:
 - Develop basic model from background research
 - Interpret zones of varying resistivity
- Detect DNAPL:
 - Identify high-resistivity anomalies which represent the presence of contamination

DATA COLLECTION

DATA DISPLAY

PROJECT DESCRIPTION

DEMONSTRATION/VALIDATION OF 3D EM SURVEYS

- Perform 3D EM surveys at four DoD installations that have differing geology and DNAPL contamination.
- Verify these survey results by comparing to conventional site characterization methods
- Document the capabilities and cost effectiveness of this technology.
- Transfer this information to project managers responsible for site clean-ups.

DEMONSTRATION SITES

- NAS Alameda, CA saturated sediment
- Tinker AFB, OK interbedded sand and shale
- Letterkenny Army Depot, PA Karst (limestone)
- Allegany Ballistic Lab, WV deformed, fractured bedrock

PROGRESS

• Contract to be awarded in April 1997

<u>Task</u>	<u>Alameda</u>	<u>Tinker</u>	<u>Letterkenny</u>	<u>Allegany</u>
3D survey:	Jun 97	Aug 97	Oct 97	Dec 97
Verify:	Aug 97	Oct 97	Dec 97	Feb 97
Report:	Oct 97	Dec 97	Feb 97	Apr 97

EXPECTED BENEFITS

- Install fewer wells
- Optimize location of wells
- Improve design of remediation systems
- Reduce chance of spreading contaminants
- Estimate volume of DNAPL/LNAPL contamination
- Better define complex geology
- Monitor cleanup effectiveness
- Support intrinsic bioremediation studies

USERS

- Personnel responsible for characterizing a site or designing a monitoring/remediation system
 - Remediation Project Managers (RPMs)
 - Cleanup contractors

BARRIERS

- Demonstrating technical feasibility
- Regulatory acceptance
- Greater upfront costs
- Limits drilling revenues

FUNDING SOURCE

Demonstration project:

ESTCP - DoD agency sponsoring demonstration & validation of innovative technologies

• Future work:

BRAC, DERA, NAVFAC, base funds

TRANSITION PLAN

- Identify users
- Develop technology transfer tools
 - -technology data sheet
 - generic SOW & cost estimate
 - promotional video
 - internet home page
 - newsletter articles & conference papers
- Coordinate with various environmental agencies:
 EFA, EFD, ARTT; AFCEE, AL/EQW; AEC, HTRW-CX;
 EPA/DoD/DOE Roundtable; ITRC Work Group; CMECC, NERL (EMSL)

JOINTNESS

Demonstrations being performed at Navy, Air Force, and Army facilities:

- Naval Air Station Alameda, CA
- Letterkenny Army Depot, PA
- Tinker Air Force Base, OK
- Allegany Ballistic Lab, WV

ISSUES

• Finding DNAPL free-product at the sites

EOL SYSTEM DESCRIPTION

<u>Transmitter Loop</u>	Receiver	<u>Data</u>
4 meter ² area	2.5' length	16 byte A/D converter
32 turns	1.6" diameter	1/100 scale resolution
11 amps	30,000 turn, 28 gage wire	263 Hz

RESISTIVITY VALUES

<u>hm-m</u>	saturated rock	<u>ohm-m</u>
2-5	shale	1-10
5-20	sandstone	10-50
0-50	limestone	50-10 ⁴
20-50	volcanic rock	100-500
	metamorphic rock	300-10 ³
)	-5 -20 0-50	-5 shale -20 sandstone 0-50 limestone 0-50 volcanic rock

vadose zone soils: 10-50 times resistivity

minimum resistivity contrast = 1.5

<u>contaminants</u> <u>ohm-m</u>

- non-dissolved DNAPL >106
- non-dissolved LNAPL >10⁶